Supplementary information

Simulation Methods

A. Nanotube structures

We considered two open-ended finite length (5,5) BNNT and CNT with both ends saturated by hydrogen atoms. The tubes are 14.2 Å long and 6.9 Å in diameter. The initial C-C and C-H bond lengths were 1.42 Å and 1.09 Å, respectively. The initial BN bond length was 1.446 Å. The N-H and B-H bond length was 1.09 Å. The nitride atoms were then moved slightly outwards (by ~ 0.032 Å) and the boron atoms were moved slightly inwards from the tube center (by ~ 0.032 Å) to make a buckled BNNT, which is consistent with previous ab initio calculations on BNNT geometries.S1, S2 We then obtained geometry optimized structures for both tubes by the AM1 semiempirical method using HyperChem 7.51.S3 For BNNT geometries, AM1 method reproduces the large cBN cluster in good agreement with experimental structure.S4 For the CNTs, Han and JaffeS5 found good agreement in carbon nanoconic tip energies and geometries obtained from using AM1 and DFT/B3LYP method. Furthermore, the CNT geometry obtained from the B3LYP/3-21G method has been found to be in good agreement with experiments.S6

B. Molecular dynamics simulation

MD simulations were performed using modified GROMACS 3.2.1.S7 The initial simulation box was $2.8 \times 2.772 \times 6.3$ nm3. The systems were replicated periodically in all the three dimensions. The reservoirs were initially filled with approximately 900 water molecules. The Nosé-Hoover thermostatS8 with a time constant of 0.1 ps was employed to regulate the temperature at 300K. The Parrinello-RahmanS9 piston-coupling scheme with a time constant of 2.0 ps and a compressibility of 4.5×10^{-5} bar$^{-1}$ maintained the system at 1 bar. The Lennard-Jones parameters for carbon atoms, water molecules, and slab are summarized in the previous work.S10 The Lennard-Jones parameters for the boron and nitride atoms were taken from Ref. S11 ($\sigma_{B:B} = 0.3453$ nm, $\varepsilon_{B:B} = 0.3971$ KJ/mol, $\sigma_{N:N} = 0.3365$ nm, $\varepsilon_{N:N} = 0.6060$ KJ/mol), and parameters for the saturated hydrogen atoms were taken from Ref. S12 ($\sigma_{H:H} = 0.2813$ nm, $\varepsilon_{H:H} = 0.0683$ KJ/mol). Particle mesh Ewald (PME) method with a 10 Å real-space cutoff, 1.5 Å reciprocal space gridding, and splines of order 4 with a 10^{-5} tolerance was implemented to compute electrostatic interactions. The equations of motion were integrated by using a leapfrog algorithm and the simulation time step is 1.0 fs. The simulations were continued for 40 ns to obtain enough statistical sampling.

C. Diffusion coefficient

The self-diffusion coefficient was computed to evaluate water transport. The axial diffusion coefficient D_z of water is related to the slope of the water mean-squared displacement (MSD) by the well-known Einstein relation,

\[
D_z = \lim_{t \to \infty} \frac{\langle r(t) - r(0) \rangle^2}{\Delta t} = \frac{1}{2} \lim_{t \to \infty} \frac{\langle \Delta r^2 \rangle}{\Delta t},
\]

where $r(t)$ is the position vector at time t.11
D. Potential of mean force (PMF) analysis

The PMF of water was computed to obtain the energy barrier. When a water molecule i moves along the axial direction from z_0 to z, the work done, $W_i(z) - W_i(z_0)$, is computed by integrating the mean force $<F_i(z)>$ acting on the water molecule along the nanotube axis contributed by all other atoms in the system averaged over all the configurations,S13 i.e.,

$$W_i(z) - W_i(z_0) = \int_{z_0}^{z} <F_i(z')> dz'$$

where z_0 is the reference position (taken as the end of the simulation box) where PMF is zero.S14 We obtained the mean force distribution by sampling the force experienced by the water molecules placed at various positions along the nanotube axis.S13

REFERENCES

S3. HyperChemTM, hypercube, Inc., 1115 NW 4th Street, Gainesville, FL 32601, USA.