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Abstract

An efficient algorithm for self-consistent analysis of three-dimensional (3-D) microelectromechanical systems (MEMS) is described. The
algorithm employs a hybrid finite-element/boundary-element technique for coupled mechanical and electrical analysis. The nonlinear coupled
equations are solved by employing a Newton-GMRES technique. The coupled algorithm is shown to converge rapidly and is much faster

than relaxation for tightly coupled cases.
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1. Introduction

Micromachining technology has enabled the design and
fabrication of micromechanical structures such as microsen-
sors, microactuators, accelerometers, and chemical sensors.
Although there are many designs which use piezoelectric,
thermal, pneumatic, and magnetic actuation, so far the most
popular approach is to use electrostatic forces to move micro-
machined parts. For designers of such microelectromechan-
ical (MEM) devices to investigate design alternatives, they
need efficient, robust, and easily used computer simulation
tools. Since most of the structures of interest are geometri-
cally complicated, electromechanically coupled, and are
inherently three-dimensional, microelectromechanical CAD
(MEMCAD) tool developers have been focused on improv-
ing the usability, efficiency, and robustness of coupled 3-D
electromechanical analysis. The analysis of electrostatically
actuated MEM structures involves the tight coupling of
mechanical and electrostatic forces. The electromechanical
coupling is illustrated through a beam over a ground plane
example shown in Fig. 1. When a voltage is applied between
the beam and the ground plane, a charge distribution is
induced on the surface of the beam. This charge distribution
causes the beam to deflect and the charge distribution on the
beam surface changes because of the beam deflection. An
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Fig. 1. Tllustration of electromechanical coupling problem through a 2-D
beam over a ground plane example: (a) applied voltage causes a charge
distribution; (b) the deformed structure with charge redistribution.

equilibrium state is obtained when the forces due to the beam
deflection and the surface charges balance each other. The
beam deflection and the electrostatic charges can be obtained
by the solution of coupled problems involving mechanical or
elastostatic analysis and electrical or electrostatic analysis.
In order to get the best efficiency for coupled electrome-
chanical analysis, it is desirable to use the fastest methods for
each of the domains of analysis. In particular, the fastest 3-D
electrostatic analysis programs are based on accelerated
boundary-element methods [1,2], and the fastest analysis
programs for the large deformations encountered in MEMS
are based on Galerkin finite-element analysis. A simple
approach to exploiting the existence of these individual solv-
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ers is to perform the coupled analysis using relaxation [3,4],
in which case the major issues are ones of grid interpolation
and interprogram communication. Unfortunately, the relax-
ation approach can converge slowly or not at all, particularly
if the structure is very flexible or the electrostatic fields are
large, and we shall give examples of this in Section 5. Matrix-
free surface-Newton methods were developed to insure con-
vergence, but still use the individual domain solvers as ‘black
boxes’ [5,6]. Although the surface-Newton methods had
guaranteed convergence properties, their performance was
extremely sensitive to a perturbation parameter used in the
matrix-free approach. In addition, each surface-Newton iter-
ation was expensive, requiring a complete nonlinear
elastostatic and linear electrostatic solve. In this paper, we
present a preconditioned matrix-implicit full Newton method
which improves the efficiency and robustness of coupled 3-
D electromechanical analysis, but at the cost of requiring
some modification of the individual domain solvers.

This paper is organized as follows: the elastostatic and
electrostatic analysis are described in Section 2 and Section
3, respectively. A coupled approach to 3-D electromechanical
analysis is presented in Section 4. Numerical results are pre-
sented in Section 5 and finally conclusions are given in
Section 6.

2. Elastostatics

Micromechanical structures undergo large deformation
when subjected to electrostatic actuation. The nonlinear struc-
tural deformation can be determined by considering the equi-
librium of the body in the deformed configuration. Since the
deformed structural configuration is not known, the equilib-
rium equations can be transformed and expressed with
reference to either the original undeformed, unstressed con-
figuration or to the last computed deformed configuration.
The first approach, where the equilibrium equations are
expressed with reference to the original configuration, is
defined as the total Lagrangian (or simply Lagrangian) tech-
nique and the second approach is defined as the updated
Lagrangian technique (see, e.g., Ref. [7] for differences
between the two approaches). A key issue with either
approach is the appropriate definition of stress and strain
measures. In a Lagrangian approach, the technique employed
in this paper, the appropriate stress and strain measures are,
respectively, the second Piola—Kirchoff stress tensor and the
Green—Lagrange strain tensor {8].

Denoting ) to be the initial configuration occupied by a
material body and I to be the material boundary, the nonlinear
equilibrium equations for finite deformation of a structure,
expressed with reference to the initial configuration, are
summarized as follows [8]:

V- (VeS) +pof=0in Q (1)
p=gonT, (2)
FiASABNB=hi on Fhi (3)

where F=Vo is the deformation gradient matrix, ¢ is the
transformation which maps points from the original config-
uration X to the deformed configuration x, i.e., x= (X}, Sis
the symmetric Piola—Kirchoff stress tensor, p, is the density
of the material, fis the body force, g are the Dirichlet bound-
ary conditions specified on the boundary I',, the tractions #;
are the natural boundary conditions specified on the boundary
Ty Fia= 08¢/ 0X4, S4p, 1 <1, A, B <3 denote the components
of the deformation gradient and stress tensor, respectively,
and Nj is the unit outward normal.
The transformation ¢(X) can be written as

x=(X)=X+u 4

where u is the unknown displacement vector. The stress com-
ponents, S, p, are related to the strain components, E, 5, by the
constitutive equation
IW(E)

oF,p

Sap= (5)
where W(E, z(¢)) is the stored energy function of the mate-
rial. The strain components are related to ¢ by the relation

1{ 3¢; 0,
EAB=§|:i—¢"—5AB] (6)

where 8,5 is the Kronecker delta.

Egs. (1)-(6) summarize the fundamental nonlinear elas-
tostatic model for finite deformation of a structure. The cou-
pling to the electrostatic equations appears through the
surface tractions. The surface charges create an electrostatic
pressure that acts in the direction of the structure surface
normal. The electrostatic pressure on a thick conductor is
given by the expression

1 E 3
h=-2-En ogq) (N

where o, the surface charge density, is a function of charge
and is determined through a solution of the electrostatic equa-
tions, and E, is the normal electric field at the surface.

2.1. Finite-element formuliation

The nonlinear elastostatic equations are discretized by
employing a Galerkin finite-element method. Denote 7 to be
a test function and let the variational functional spaces .5 and
7 consist of continuous functions with square integrable first
derivatives, The solution space .5 is the set of all such func-
tions satisfying the Dirichlet boundary conditions. The
weighting or test-function space 7 is made up of functions
whose value is zero where Dirichlet boundary conditions are
specified, i.e.,

{(#=ulueH' , u=g—XonT,} ®
{7 =nIn€H, n=00nT} )

The weak-form of elastostatics is then stated as follows:
given po, f, g and h;, find u € 5 such that for all n€ ¥~
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jVn:[quS(E((p))]dQ—fpofndﬂ—f-nhdr=0 (10)
e) 0 I'n

Let "% and * C¥ be finite-dimensional approxi-
mations to .% and 7, respectively. The Galerkin form is then
stated as follows: given po, f, g and &, find u* € " such that
for all €™

j Vi VSt (B (¢)) 14— fpofn"de— fn’*hdr =0
QO (e} Iy

(11)

To construct a matrix form, the trial and test functions are
approximated by linear basis functions, i.e.,

nnd

W'=Y Nd, (12)
a=1
nnd

=Y N, (13)
a=1

where nnd is the number of finite-element nodes, N, is the
shape function of node a, d, is the unknown displacement
vector of node g, and ¢, is the arbitrary weighting function
vector. Substitution of Egs. (12) and (13) into the Galerkin
form (11) leads to a nonlinear system of equations which is
linearized and solved incrementally for the displacement .
The nonlinear residual equation for a finite-element node, a,
is given as

Riy(,q) = f Z1340 - j N, o fi - jNahm)dr (14)
[s} O Tx

where
CAR AT Si
[Ziz]:Na,z S22
[ 3] Nas G S33
Z,= ’ ’ S= 15
=l AN+ (I s.|
[N, s+ [ 3] Naz Sa3
_[prll]TNa,a"‘ [dé]TNa,l_ _531_

@, denotes differentiation with respect to the ith coordinate
and S; is the 7,jth component of the stress tensor. Note that
the nonlinear residual equation is a function of displacement
and charge.

3. Electrostatics

In electrostatic analysis, the conductor potentials are spec-
ified and the potential must satisfy the Laplace equation in
the region between the conductors. The charge on each con-
ductor can be determined by solving the integral equation

[9]

[ 1 !
W) = j T

x €surfaces (16)

where (x) is the known conductor surface potential, o is
the surface charge density, da’ is the incremental conductor

surface area, x, x’ €R>, and |lx]| is the usual Euclidean
length of x given by Vx{ +x7 +x7.

A standard approach to solving Eq. (16) numerically for
o is to use a piece-wise constant collocation scheme. That is,
the conductor surfaces are broken into » small panels, and it
is assumed that on each panel i, a charge, g;, is uniformly
distributed. Then for each panel, an equation is written which
relates the known potential at the center of that ith panel,
denoted p;, to the sum of the contributions to that potential
from the » charge distributions on all # panels [10]. The
result is a dense linear system,

Rg=Pq—p (17)

where PER*™*, g is the vector of panel charges, pER" is
the vector of known panel potentials, and

1 1
P,=— | —————dd’ 18
! a,-j4weollx,-—x']l (18)

panel;

where ¥, is the center of the ith panel and g; is the area of the
jth panel. Observe from Eq. (17) that the electrostatic resid-
ual is a function of conductor geometry and charge, i.e.,
RE( u’Q) M

The dense linear system of Eq. (17) can be solved to
compute panel charges from a given set of panel potentials.
If Gaussian elimination is used to solve Eq. (17), the number
of operations is of order n°. Clearly, this approach becomes
computationally intractable if the number of panels exceeds
several hundred. Instead, consider solving the linear system
(17) using a conjugate-residual-style iterative method like
GMRES [11]. Such methods have the form given below:
® Algorithm 1: GMRES algorithm for solving Eq. (17)
® Make an initial guess to the solution, g°.
® Setk=0
® do {

® Compute the residual, 7*=p — Pg*.

® if ||r]| <tol, return g* as the solution.

® ¢lse {

® Choose ¢’s and 8 in
® qk+l =Zf=0ajq’+,6rk
® to minimize | IF*!]].
® Setk=k+1.
®}
.}

The dominant costs of Algorithm 1 are in calculating the
n? entries of P using Eq. (18) before the iterations begin, and
performing n* operations to compute Pg* on each iteration.
A precorrected fast Fourier transform (FFT) algorithm
which, through the use of carefully applied approximations
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and transform techniques, avoids forming most of P and
reduces the cost of forming Pg* to the order nlog n
operations.

3.1. The precorrected-FFT approach

The precorrected-FFT approach generates an implicit
approximation to P which can be used to compute the matrix—
vector products Pg rapidly [2]. In this approach, the inter-
action between nearby panels is computed explicitly. These
entries in the potential coefficient matrix, P, are computed by
employing Eq. (18).

In a subsequent step, the portion of the matrix—vector prod-
uct Pq associated with distant interactions is computed by
employing an FFT algorithm. Specifically, a 3-D grid is first
constructed to include all the panels. The charge in each panel
is then projected onto the grid. The potential at the grid points
due to grid charges is a 3-D convolution. The convolution
can be computed rapidly by employing the FFT algorithm.
The grid potentials are then interpolated onto the panels to
obtain the potential on each panel. A problem with using this
FET approach to compute distant interactions is that the
method unavoidably computes inaccurate approximations to
the nearby interactions. Hence, the poor approximation gen-
erated by the grid approach to nearby panels is subtracted
from the direct interactions. This step is referred to as the
precorrection. The matrix—vector product is then obtained by
adding the precorrected direct interactions and the grid-
approximated distant interactions.

4. Coupled algorithm

In a coupled approach to 3-D electromechanical analysis,
the elastostatic and electrostatic equations are solved as a
single system. This approach, in comparison to the relaxation
algorithm, takes into account the strong coupling between
electrical and mechanical systems and in comparison to the
surface-Newton technique avoids the several nonlinear elas-
tostatic and linear electrostatic solves during each inner
iteration. A coupled approach has been attempted before [ 12]
by employing a finite-element method for both the electro-
static and elastostatic equations. This approach may not be
computationally very efficient as a finite-element method, in
comparison to a precorrected-FFT accelerated boundary-ele-
ment method, would require the construction of an exterior
mesh for the electrostatic analysis. A computationally effi-
cient approach of a hybrid finite-element/boundary-element
method is employed in this paper. A coupled algorithm for
electromechanical analysis is shown in Fig. 2. The outer
Newton iteration solves the nonlinear coupled system, and
the linear system within each Newton iteration is solved using
the GMRES algorithm.

A number of issues must be addressed in the coupled
approach. First is the efficient computation of the coupled
system Jacobian or the matrix—vector product involving the

Ry IR
__gﬁ:_. _é.q&L A"m}_, _{RM(H(D,,](O)}

R, OR " 0 0
Ry e \2g Re(u® ™)
o og

wiH = g0 5 At

g =gl Agh

Next Newton lteration

Fig. 2. A coupled algorithm for self-consistent electromechanical analysis.

Jacobian and the displacement/charge vector when employ-
ing iterative solution techniques. Second is the storage cost
for the coupled system Jacobian. Matrix-free techniques can
be used to advantage to minimize storage cost. However, the
robustness of the matrix-free technique is very sensitive to
the precise choice of the perturbation parameter. If the per-
turbation parameter is too large, the nonlinearities in the resid-
ual will corrupt the derivative estimate. If the perturbation
parameter is too small, the small numerical errors in solving
the electrostatic and elastostatic problems will corrupt the
derivative estimate. Third is the definition of appropriate units
for the Jacobian and the residual. The variables in the elas-
tostatic and electrostatic equations represent different units
and scales and care should be exercised when computing the
Jacobian or the residual. This is easily handled by nondimen-
sionalizing both the elastostatic and electrostatic systems. The
issues of storage and efficient computation of the Jacobian
are discussed in the following paragraphs.

The coupled system Jacobian can be divided into four
parts: the entirely elastostatic paxt, often referred to as the
stiffness or the deformation-coefficient matrix, which deter-
mines the change in force due to geometric perturbations; the
entirely electrostatic part, which determines the change in
potential due to perturbations in surface charge; the electrical
to mechanical part, which determines the change in force due
to perturbation in surface charge; and the mechanical to elec-
trical part, which determines the change in potentials due to
geometric perturbations. The deformation-coefficient matrix
is computed by employing a Galerkin finite-element formu-
lation as discussed in Section 2. The formulation accounts
for both material and geometric nonlinearities and is sum-
marized in Fig.3(a). A sparse storage scheme [13] is
employed to store the deformation-coefficient matrix. The
electrostatic or the potential coefficient matrix is not needed
explicitly as the GMRES algorithm, within each Newton
iteration, requires only a matrix—vector product involving the
matrix, dRg/dq, and the charge-increment vector, Aq. This
matrix—vector product can be computed by employing the
precorrected-FFT algorithm discussed in Section 3. In earlier
approaches to electromechanical simulations [3-5], a mul-
tipole algorithm [14] is employed to compute efficiently the
matrix~vector product. The precorrected-FFT algorithm, as
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Fig. 3. (a) Computation of the deformation coefficient matrix. (b) Com-
putation of the matrix—vector product employing precorrected-FFT
technique.

compared to the multipole algorithm, has been shown to be
faster and more memory efficient [2]. The computation of
the matrix—vector product with the precorrected-FFT tech-
nique is summarized in Fig. 3(b).

4.]1. Electrical to mechanical coupling

The electrical to mechanical coupling, 3R;,/3g, is obtained
from Eq. (14) as

SRy _ —JNa?-}E dar (19)
dq oq

s
where R%, is the residual equation for the finite-element node
a, and noting that o =g/A, where A is the panel area, dk/dg
is obtained trivially from Eq. (7).

The computation in Eq. (19) can be performed by com-
puting an equivalent pressure (84/9q) for each boundary face
that belongs to both mechanical and electrical domains. The
size of the mechanical to electrical coupling matrix is 3m X n
where m is the total number of finite-element nodes on the
mechanical domain and » is the total number of surface panels

on the electrical domain. This coupling matrix is, however,
very sparse as each finite-element node belongs to only a few
panels. Hence, only the non-zero entries of the coupling

" matrix are stored.

4.2. Mechanical to electrical coupling

The mechanical to electrical coupling term can be com-
puted by employing a matrix-free approach. The residual
equation for the electrostatic system is given as

Rg=Pg—p=0 (20)

where P is the potential-coefficient matrix, g is the charge
vector and p is the vector of applied potentials. An approach
to compute the mechanical to electrical coupling termis given
as

%Au(” zP(u+§Au('))q—P(u)q
du €

(21)

where € is a small parameter. In order to compute accurately
the matrix—vector product, (8Rg/du)Au'”, a small value of
€ is desired and is determined through an optimization prob-
lem [15]. For well-scaled residuals, an optimal value of € is
0(€,}'?), where e, is the machine precision. Unlike the
surface-Newton technique, the choice of the matrix-free
parameter, €, is not critical and does not affect the robustness
or the accuracy of the coupled algorithm [16].

According to Eq. (21), the mechanical to electrical cou-
pling can be computed by performing two matrix—vector
products. The first matrix—vector product, P(u)g, is straight-
forward and is computed in the outer Newton loop. The sec-
ond matrix—vector product, P(u+ €A u?)g, can be obtained
by perturbing the panel/conductor geometry from u to
u+eAu” and determining the new potential coefficient
matrix, P(u+ eAu‘?). The second matrix—vector product is
computed in the inner GMRES loop by employing the
approximations generated by GMRES to Au®.

The two matrix—vector products required to compute the
electrical to mechanical coupling can be obtained by employ-
ing either the precorrected-FFT technique or a direct method.
In a setup phase, the precorrected-FFT technique computes
all the transformation matrices (precorrected direct interac-
tions, projection of panel charges onto grid, FFT and projec-
tion of grid potential onto panels). The transformation
matrices are a function of the geometry and need to be com-
puted once. In a subsequent evaluation phase, the matrix—
vector product can be computed in order nlog n operations,
Clearly, the overhead in the precorrected-FFT technique is
the setup phase. In order to compute the matrix—vector prod-
uct, P(u+eAu‘?)g, a setup is needed during each iteration
of the inner GMRES loop. An additional setup is needed if a
preconditioner is to be employed (discussed in Section 4.3).
A computationally efficient approach is to employ a direct
method, i.e., for nearby panels the potential is computed using
the exact analytical formulae [17] and the distant panels are
evaluated using quadrature rules. The complexity of the direct
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approach is order p*>+ 2pg, where p is the number of panels
on the mechanical domain and p + g =n. As will be discussed
below, a preconditioner can be applied very efficiently with
a direct calculation. In either approach, only two vectors of
size n need to be stored to compute the mechanical to
electrical coupling.

4.3. Preconditioner

A block diagonal preconditioner of the form

_|Rm O
o 2]
is applied to the coupled linear system to accelerate the con-
vergence of the GMRES algorithm. In the above equation,
IT denotes the preconditioner, Ry, = 0R,,/du is the deforma-
tion coefficient matrix, and Rz, = 3R/ 9q is the potential coef-
ficient matrix. The preconditioned linear system is written as

I RigRysg [JAuP\ _ [ RyzuRy (23)
Rz'Rz, 1 Ag® Rz, Ry

where Ry, = 0R,,/8g denotes the electrical to mechanical cou-
pling and Ry, =8Rz/0u denotes the mechanical to electrical
coupling.

Consider first the calculation of the right-hand-side vector
in Eq. (23). The mechanical and electrical residuals, the
deformation coefficient matrix and the transformation matrix
(setup phase) of the precorrected-FFT algorithm are com-
puted in the outer Newton loop. The deformation coefficient
matrix is stored in sparse ordered and factored form. A sparse
solver is then employed to compute R;; Ry, Rg, Ry is com-
puted by employing the GMRES algorithm. The matrix—
vector product needed in the GMRES algorithm is computed
by employing the evaluation pass of the precorrected-FFT
algorithm. Note that no setup phases are needed inside the
GMRES algorithm. Next, consider the computation of
RizaRas,A g and Rz'Ry, A u'® required in the inner GMRES
loop. Denoting v{” and v§’ to be the jth iteration GMRES
approximations to Au” and Ag‘?, respectively, Ry,v¥” and
Re, 0 are first computed. A sparse solve is then employed
to compute RyzRy,vY’ and a GMRES solver to compute
Rz'Rz,p{. The preconditioned Newton-GMRES algorithm
is briefly summarized in Algorithm 2.
® Algorithm 2: Preconditioned Newton-GMRES technique
@ while not converged / * outer Newton loop * /

® compute R, Rz
compute transformation matrices for precorrected-FFT
compute and factor Ry,
sparse solve to obtain Ry;R,,
use GMRES to compute Rz,'R:
while not converged / * inner GMRES loop #/
® /% steps to compute matrix—vector product in jth

GMRES iteration */
® compute Ry, 05>
@ sparse solve to obtain Rz Ry, vs’
® compute Rz, v’

® use GMRES to compute Rz,'Rg, v
® /x remaining steps of GMRES not shown * /
@ end while
® update u
® update g
® end while

5. Results:

Numerical results are presented for three examples: beam
over a ground plane, two silicon bars positioned perpendic-
ular to each other, and a comb drive structure. The perform-
ance of coupled and relaxation algorithms is examined for all
the examples. In particular, the convergence characteristics
and the simulation times are compared.

5.1. Beam éxamples

Two beam examples over a ground plane structure are
considered; the beams are of different dimensions and the
convergence characteristics of the relaxation and coupled
algorithms are a little different and these are pointed out in
the results. ‘

5.1.1. Example 1

The beam example considered here is 500 wm long, 50 pm
wide, 14.35 pm thick and is positioned 1 wm above the
ground plane. Fig. 4 shows a top view of the beam exaraple.
The beam is discretized into 50 parabolic elements and the
ground plane is discretized into 250 four-node elements.
When a positive potential with reference to the ground plane
is applied on the beam, the beam deflects towards the ground
plane because of the electrostatic force. As the potential dif-
ference increases, the tip of the beam approaches the ground
plane, and touches the ground plane for a certain bias defined
as the pull-in voltage. The pull-in voltage for the beam con-
sidered here is 17.24 V.

Fig. 5 compares the peak deflection obtained from the
relaxation and coupled algorithms. The results are identical,
verifying the accuracy of the coupled solver. The deflection
of the beam for an applied bias of 17.23 V is shown in Fig. 6.

The performance of the relaxation and coupled algorithms
for the thick-beam example is summarized in Table 1.
Observe that the coupled algorithm takes fewer iterations and
is much faster compared to the relaxation algorithm. Fig. 7
compares the convergence of the relaxation and coupled algo-
rithms for the beam and ground plane example. Note that

Fig. 4. Top view of a beam over a ground plane example.
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Table 1
Comparison of relaxation and coupled algorithms for number of iterations
and CPU (s) for a thick beam and ground plane example

Bias # Iterations CPU (s)
Relaxation Coupled Relaxation Coupled
2.0 4 2 283.5 368.4
4.0 5 3 381.0 476.2
6.0 6 3 507.7 514.5
8.0 7 3 608.4 5724
10.0 8 3 7102 6124
12.0 10 4 909.5 801.3
14.0 13 4 12444 8134
16.0 20 5 2015.8 1096.0
17.0 41 6 4248.1 - 1399.3
17.20 94 6 9713.83 14825
17.23 200 9 20910.5 2289.8

closer to pull-in the relaxation algorithm converges slowly,
but the coupled algorithm still converges rapidly. The slow
convergence of the relaxation algorithm near pull-in is due
to the increased coupling between elastostatic and electro-
static systems.

The coupled algorithm employs a matrix-free approach to
compute the electrical to mechanical coupling. The matrix-
free parameter, €, is a concern as the method may not work
for all values of e. This issue is investigated and the results
are presented in Fig. 8, where the convergence of the coupled
algorithm is compared for three different values of €. A value
of €= 1.0 requires only one more iteration for convergence
as compared to using an optimal €. No noticeable conver-
gence-rate differences are observed between employing an
optimal € and an € larger than optimal by a factor of 100.

AT
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Fig. 7. Convergence of relaxation and coupled algorithms for a beam and
ground plane structure: (a) applied bias is 17.20 V; (b) applied bias is
1723 V.
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Fig. 8. Comparison of convergence for different values of €. Eopt =sqrt( €a),
100*Eopt=100-sqrt(e,), and E=1 corresponds to e= 1.0. Note that the
100 * Eopt curve overlaps with the Eopt curve.

Residual

Hence, the choice of € is not critical for the robustness of the
method.

5.1.2. Example 2

The beam structure considered is 80 pm long, 10 pm wide,
0.5 pm thick, and is positioned 0.7 pm above the ground
plane. Fig. 9 shows a top view of the beam example. The
pull-in voltage for the beam considered here is 2.39 V. The
beam is discretized into 200 parabolic elements (100 X2 X1

S T T AR T e

Fig. 9. Top view of a beam over a ground plane example.
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Fig. 10. Deflection of the beam {not to scale) for an applied bias 0f 2.38 V.
Note that the ground plane is not shown in the Figure.

Table 2
Comparison of relaxation and coupled algorithms for number of iterations
and CPU (s) for a beam and ground plane example

Bias # Iterations CPU (s)
Relaxation Coupled Relaxation Coupled

1.0 6 4 35114 3965.8
15 8 4 47535 44433
2.0 13 5 7693.5 55324
225 20 6 11756.6 6908.7
235 36 6 20821.9 7406.9
2.38 75 7 42749.0 8801.6

along length, width and thickness, respectively) and the
ground plane is discretized into 624 four-node elements. The
deflection of the beam at 2.38 V, just before pull-in, is shown
in Fig. 10.

The comparison of relaxation and coupled algorithms for
the entire bias sweep is summarized in Table 2. As the bias
voltage approaches pull-in, the relaxation algorithm con-
verges slowly or fails to converge due to the increased cou-
pling between elastostatic and electrostatic equations. The
coupled algorithm, on the other hand, converges faster even
as we approach pull-in. Comparison of the simulation times
reveals that the coupled algorithm is very competitive with
the relaxation algorithm for small bias voltages (see, e. g, the
simulation times for an applied bias of 1.0 V). For an applied
bias larger than 1.0 V, the coupled algorithm is very efficient
and runs much faster compared to the relaxation algorithm.
To predict the pull-in voltage for the beam structure, the
relaxation algorithm takes a total of 91 285.9 s while the
coupled algorithm takes 37 058.7 s. Hence the coupled algo-
rithm is about 2.5 times faster than the relaxation algorithm
for this example. The convergence of the relaxation and cou-
pled algorithms for an applied bias of 2.38 V is shown in
Fig. 11.

5.2. Cross bars example

The cross bars example consists of two silicon bars posi-
tioned as shown in Fig. 12. The beam positioned horizontally
is the movable part and is positioned 1 pm above the fixed
beam in the z-direction. The left-end of the horizontal beam
is fixed, so that when a potential is applied on the movable
beam, the tip of the movable beam deflects in the z-direction.
The movable beam is discretized with 30 parabolic elements
and the fixed beam is discretized with 30 linear elements. The
deflection of the beam for a potential difference of 2000 V is

0'1 T T T 1 T

relaxation ——

0.01 coupled ~---

aalia

Y

0.001
0.0001 L

b

Residual

le-05
le-06

1e-07

1e-08 L 1 ! ! 2 L 1 L
0 10 20 30 40 50 60 70 80
# lterations

Fig. 11, Comparison of convergence of relaxation and coupled algorithms
just before pull-in for the beam and ground plane example.

Fig. 13. Deflection of the bar (not to scale) for an applied bias of 2000 V.,

Table 3

Comparison of relaxation and coupled algorithms for number of iterations
and CPU (s) for the cross bars example (an asterisk indicates that the
algorithm fails to converge for the bias)

Bias # Iterations CPU (s)
Relaxation Coupled Relaxation Conpled

200.0 6 4 449 4 385.8
400.0 11 6 11542 597.9
600.0 27 6 3666.8 671.6
700.0 73 6 10984.2 693.1
750.0 200 6 444472 682.2
800.0 * 6 * 651.9

shown in Fig. 13. Note that this solution is obtained with the
coupled approach as the relaxation algorithm does not con-
verge for a potential difference of more than 750 V.

The performance of the relaxation and coupled algorithms
for the cross bars example is summarized in Table 3. The
relaxation algorithm fails to converge for a potential differ-
ence of more than 750 V across the bars. The convergence of
the relaxation and coupled algorithms for 750 V potential
difference is shown in Fig. 14(a). Even after 200 iterations
the relaxation algorithm fails to converge to less than three
orders of magnitude. Fig. 14(b) shows the rapid convergence
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Fig. 14. Convergence of relaxation and coupled algorithms for the silicon
bars example: (a) applied bias is 750 V; (b) applied bias is 800 V.

T T T T T T
relaxationce==

coupled ----- 1

;LLJ"-LBH_KI T
I

Residual
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of the coupled algorithm and the breakdown of the relaxation
algorithm for an applied bias of 800 V. Table 3 indicates that
the coupled algorithm is also very efficient as compared to
the relaxation algorithm. For an applied bias of 700 V, the
coupled algorithm is about 15.8 times faster, and for an
applied bias of 750 V, the coupled algorithm is about 65 times
faster compared to the relaxation algorithm.

5.3. Comb drive example
The comb example consists of a deformable comb struc-

ture, a drive structure and a ground plane. As shown in
Fig. 15, the F-shaped finger structure is the comb, the E-

S0, omn
oé'g)‘ia’ T ,- 5
-

Fig. 15. Comb drive example.

shaped finger structure is the drive, and the rectangular-
shaped structure is the ground plane. The comb is discretized
into 172 parabolic elements, the drive is discretized into 144
linear bricks and the ground plane is discretized into 2688
four-node elements. When a positive potential is applied on
the drive structure, and zero potential on the comb and the
ground plane, the comb structure deforms out of plane. The
deformation of the comb structure for an applied bias of 85
V is shown in Fig. 16. Note that only the comb structure
deforms and the drive and the ground plane do not move.

A comparison of the relaxation and coupled algorithms for
the comb example is summarized in Table 4. Atlow voltages,
the deflection of the comb is small, the coupling between the
electrical and mechanical systems is weak and the relaxation
algorithm works very well. At low voltages, the coupled
algorithm takes half as many iterations as the relaxation algo-
rithm and the simulation time for the coupled algorithm is a
little longer. For higher voltages, the coupled algorithm con-
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Table 4

Comparison of relaxation and coupled algorithms for number of iterations
and CPU (s) for a comb drive example (an asterisk indicates that the
algorithm fails to converge for the bias)

Bias # Iterations CPU (s)
Relaxation Coupled Relaxation Coupled
25.0 7 6 35954 5589.8
50.0 16 8 9138.0 11833.5
75.0 70 10 42160.3 18590.7
80.0 142 9 81827.0 16670.2
85.0 * 10 * 18490.9
1 L 1 { 1 T T T 1 3
o relaxation —— ]
0.1 coupled --- ]
0.01 ¢ 3
§ 0.001 -";I e
S 00001 | E
& Ly 1
1le-05 :-':‘ 3
1e-06 -l1*, E
1e-07 F i 3
1e-08 C 1 1 [ 1 ) ' I

0 20 40 60 80 100 120 140 160
# Iterations

Fig. 17. Comparison of convergence of relaxation and coupled algorithms
for a comb example at an applied bias of 80 V.

lp T T T T T T T

01 ko relaxation —— 1
SN coupled ----
001 F kY -;

0.001 | \ .
0.0001 | 3
1e-05 | e
le-06 [ 3
1e-07 | 3

1e-08 L 1 i [l 1 i 1 1

0 2 4 6 8 10 12 14 16
# Iterations

Fig. 18. Comparison of convergence of relaxation and coupled algorithms
for a comb example at an applied bias of 85 V.

Residual

verges much faster than the relaxation algorithm. For a bias
of 80 V, the coupled algorithm is about 4.9 times faster. The
convergence of the relaxation and coupled algorithms at 80
V bias is shown in Fig. 17. For an application of 85 V on the
drive, the relaxation algorithm fails to converge. The coupled
algorithm converges very rapidly and takes only 10 iterations.
This is illustrated in Fig. 18.

6. Conclusions

In this paper we presented a coupled algorithm for 3-D
electromechanical analysis. The coupled algorithm employs
a Galerkin finite-element method for the elastostatic analysis

and a boundary-element method with precorrected-FFT
acceleration for the electrostatic: analysis. The electrical to
mechanical coupling term is computed by direct integration
and a matrix-free technique is employed to compute the
mechanical to electrical coupling term. A block diagonal
preconditioner is applied to accelerate the convergence of the
GMRES algorithm. Numerical results presented for 3-D elec-
tromechanical structures show that the coupled algorithm
converges rapidly and is much faster as compared to the
relaxation algorithm. Convergence of the coupled algorithm
is demonstrated for a cross bars and a comb drive example
for which the relaxation algorithm fails to converge.
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